LIMITING VISCOSITY OF FERROMAGNETIC
SUSPENSIONS IN A STRONG MAGNETIC FIELD

Yu. L. Raikher and M. I. Shliomis UDC 532.133+538,245+541.18:538

The effective viscosity of a suspension of ferromagnetic particles with anisotropy of the
"easy-axis" type is calculated. The case considered is that in which the magnetic field in
which the suspension is flowing greatly exceeds the internal anisotropy field, and the
concept of the "frozen" magnetic moments of the particies is inapplicable. The relation-
ship between the viscosity and the anisotropy field is established. The question as to the
magnitude of the viscosity for an arbitrary ratio of the internal and external fields is
discussed.

1, The concept of rotational viscosity developed in {1] enables us to explain the experimentally ob-
served [2, 3] increase in the viscosity of suspensions of ferromagnetic particles under the influence of an
external magnetic field. The reason for this effect is as follows In the absence of a field the angular
velocity of rotation of the part1cles suspended in the flow € = Y 2 rot v is equal to the local angular velocity
of rotation of the liquid @ = /2 rot v. The viscosity is in this case described by the Einstein equation

n=mot+ 5] (1.1)

where 7y is the viscosity of the carrier liquid, ¢is the volumetric concentration of the solid phase. On
placing the suspension in a uniform magnetic field H the latter exerts an orientation effect on the magnetic
moments of the particles 4, preventing the free rotation of the particles in the vortical flow. The difference
in angular velocities so arising Q—® corresponds to the moment of the frictional forces 6m)V(Q—w), where
V is the volume of one spherical particle. This additional internal friction manifests itself as an increase
in the effective viscosity of the suspension: 1g = 1 + 1y,where 7y is the rotational viscosity.

The quantity 7,, depends considerably on the magnetocrystalline-anisotropy energy of the ferromag-
netic material, which determines the interaction between the magnetic moment i and the rotational degrees
of freedom of the particle. In the absence of such an interaction {(model of "free" magnetic dipoles) the
orientations of the vector i in the direction of the field H does not interfere with the free rotation of the
particle in the flow (w = &), so that in this model #p = 0. In the limiting case of strong interaction, when
the magnetic moment is rigidly connected to the body of the particle (model of "frozen" dipoles), an applied
field greatly impedes its rotation, and for a sufficiently strong field the rotation of the particle in the flow
stops completely, being replaced by sliding (¥ = 0) along the corresponding shear plaen. The rotational
viscosity %p(H) then reaches its limiting value (saturation effect) equal to [4]

N, () = ¥,9

In real ferromagnetic crystals a type of relationship intermediate between the models fo free and
frozen dipoles is established between the direction of the vector [ and the crystallographic axes of the
particle: For a finite magnetic-anisotropy energy we may only speak of a partial freezing of the magnetic
moment, However strong the external field, even if it maintains the orientation of the moments ¢ absolutely
constant, it cannot completely prevent the rotation of the particles due fo hydrodynamic forces.

The limiting value of the viscosity 7p(®) of any real magnetic suspension should lie in the range
0 << n, (00) < ¥, M0¢
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We shall now calculate Ny (=) for a suspension of ferromagnetic particles with anisotropy of the "easy-
axis" type.

2. In stable magnetic colloids ferromagnetic particles with linear dimensions & ~ 107°-10"% cm are
generally employed. For the dimensions indicated each particle forms an individual uniformly magnetized
domain with a dipole moment ¥ = MgV, where Mg is the saturated magnetization of the particle material.
The energy of such a particle in an external field is determined by the equation

U= —pH(eh)—KV({en)? e=p/p, h=H/H @.1)

where K is the energy density of magnetocrystalline anisotropy, n is the unit vector in the direction of the
axis of easy magnetization,

Every deviation of the vector e from the equilibrium orientation defined by the direction of the

effective field
4 U

Ho= —p™ 5= =Hh+ 2KMz'n (e-n) 2.2)

is accompanied by a Larmor precession of the magnetic moment ¥ around He, K should be remembered
that the Larmor-precession attenuation time (£ 10~ sec) is small compared with any hydrodynamic times;
hence at every instant of time the internal state of the particle may be regarded as equilibrium (e“He).

We see from (2.2) that the magnitude and direction of Hg are determined by the vector sum of the external
field H and the anisotropy field Ho = 2K/Mg, Hence for Hy > H it is permissible to assume a frozen-in
state of the moment (el n), as in [1, 5]. Omitting the inessential constant in the expression for U we obtain
U = —pH(nh) from (2.1). The moment of the magnetic forces acting on the particle

m = —(n X 80U / dn) 2.3)
is then equal to (X' H).

For K = 0 (Hp = 0) we have an "isotropic" magnetic crystals in which the relationship between the
magnetic and the mechanical degrees of freedom is broken (model of free dipoles). In this case the rotating
moment m= 0, since the magnetic energy U = — (¢ H)does not depend on the orientation n of the easy axis of
the particle.

In order to determine the limiting viscosity of a suspension of ferromagnetic particles with finite
anisotropy in a strong external field we must consider the case in which

H> Hy, Hy=2K!Mg (2.4)

1t follows from the condition of equilibrium &”He and Eq. 2.2) for the effective field Hg that on
satisfying inequality (2.4) the magnetic moment of the particle may be regarded as parallel to the applied
field: e=h. For the magnetic energy of the particle (2.1) and the rotating moment (torque) (2.3) we than
obtain

U= —KV@h? m=2 KV (@n-h)(nxh) (2.5)
Subsequently instead of the pseudovectors we shall frequently use their dual antisymmetric tensors;
for example, for (2,5) we have

Mip = &mmy = 2KV (nhy — nih;) mhy {2.6)

3. In the hydrodynamic description of the suspension as a homogeneous continuous medium, in order
to allow for the rotational degrees of freedom of the particles we have to introduce an additional macro-
scopic variable S, the volume density of the internal moment of momentum. The latter has the sense of
the product I (@), where Iis the sum of the intrinsic moments of inertia of the spherical particles in unit
volume of the suspension, () is the mean angular velocity of their rotation. The stress tensor of a
medium with internal rotation contains the antisymmetrical part {6]

o = g0, 8 = (21g)71 (S — IQ) (3.1)

where Tg = a® p/157, is the relaxation time of the internal moment p is the density of the particle. The
change in the density of the internal moment of mementum is described by the equation

a8

1
= S—I9+M (3.2)
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where M is the volume density of the moment of the lateral forces acting directly on the particles and
maintaining the difference between the angular velocities of rotation of the particles (w) and the liquid Q:
For M = O the relaxation of S to the equilibrium value IR, takes place in a very short time, of the order

of Tg, and the stress tensor in symmetrical (¢ = 0).

.In the case under consideration the expression for M should be obtained by averaging the "micro-
scopic" torque (2.6) with respect to the orientations of the easy axes of the particles

My = N (mypy = NyBy, — NyBy (3.3)
Niw = N<{mny), By = 2KV,

(N is the number of particles in unit volume of the suspension). Since the two directions of the axis of
easy magnetization are equivalent, the degree of orientation of the suspension consisting of such "quad-
rupole™ particles is characterized by a symmetrical "orientation tensor" Nji; the intensity of the factor
creating a preferred orientation is determined by the "anisotropy tensor" Bjx. We may indicate an analogy
between (3.3) and the mechanical moment My, = IjHy — I Hj, acting on a suspension of "rigid" dipoles: In
the present case Nji and Bji play the same role as the magnetization Ij and the external field Hj, respec-
tively, in the model of frozen magnetic moments.,

To the equation
d

1
'ESik: —TS_(S1h_IQﬂ)+ (NilBkl—Nleil) (3.4)

obtained by substituting (3.3) into (3.2) we must add the equation of motion of the tensor Nijk. In ovder to
derive the missing equation we make use of the following considerations. In a system of reference rotating
at an angular velocity {w) in which the average rate of rotation of the particles equals zero, any deviation
of the density of the orientation Nji from the equilibrium value Njk° should vanish as time progresses. Let
us assume that this vanishing takes place in accordance with a relaxation law

d, 1 i

a7 Ve = — 7 (Nye — Nux) (3.5)
where d'/dt is the derivative in the rotating system of reference 7 is the time of orientational relaxation.
The rates of change of the symmetrical tensor of the second rank in the stationary and rotating systems of
reference are related by the kinematic equation

d 4
= Niw = — 03> Nig + <o) Ny) + 7 Ny (3.6)
Substituting (wg) = I"'Sik and (3.5) into (3.6), we have
1
—:—t- = —‘;‘(Nik_'Ngk) — 5 (SulVyy + SulVu) (38.7)

The orientations of the easy axes in the direction of the applied field prevents the thermal (Brownian)
motion of the particles. Under these conditions the relaxation time T should be identified with the Brownian
rotational ~diffusion time, i.e., for quadrupole particles 7 = v,V/KT, while the equilibrium orientational
distribution coincides with the canonical distribution

W, ~ exp (—U /[ kT)
(k is Boltzmann's constant, T is the absolute temperature). Using Eq. (2.5) for U, we obtain a normalized

distribution function .
W,y = (4nF)~1 exp [A (h-n)!

1 (3.8)
A=KV kT, FQ\)= Se’*x’dx
0
For the components of the equilibrium orientation tensor
Nig= N <nngdo = N {nnWodon
calculation gives
Nip = N (F1dy -+ Fahihy) (3.9)

1 F’ 3| F 1 aF
m= gt =) h=t(F—3) =%

The dimensionless parameter A, the ratio of the magnetic anisotropy energy of the particle to the
energy of its thermal motion, appears here as an analog of the Langevin argument ¢ = pH/kT ja the model
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of frozen dipoles [1, 5]. We remember that this model corresponds to the assumption A > £, while in the
present analysis we have taken the opposite limiting case (¢ > N,

Let us give the asymptotic formulas for the statistical integral F(}). For small X this may be
expressed in the form of a series

o 3,10
F_g}om, At (3.10)

In order to find the asymptotic for large A we note that F satisfies the equation
F' = 2M)1V(e* — F)
Taking account of this we obtain the equation
o © @n— O

Pegpft e 3EZ] A (3.11)

It follows from (3.9)-(3.11) that for A = 0 the suspension is isotropic (Njk°® = 1/3N‘5ik) while for A—
the anisotropies of all the particles are parallel to the applied field (Nji® = Nhjhy).

4, In the steady-state case (d/dt = 0) Egs. (3.4) and (3.7) take the form

Sip — 1Qn = 15 (Ny By — Ny, By)

Nip — N’ = =t (SN + S Ny

(4.1)

Equation (4.1) enables us to eliminate Sj from Eq. (3.1) for the antisymmetric part of the stress
tensor. We obtain:

0; = (KV /4 &in (NumBim — NimBum) {4.2)
Ny — Nip® = —1(QulNpy + QuNy) A/ 3N) INmhy(Nimhy = Npmhy) — 2N3 N pmhih] (4.9)
Coming to the solution of Eq. (4.3) we note that owing to the smallness of 7 ( 107°-107% sec) the
condition 7 <« 1 is satisfied for all values of Q of practical interest. In still liquid (§=0) the solution to
Eq. (4.3) is Njk = Njx°. The orientation tensor of the particies in a moving liquid differs from Njk° as

defined by Eqgs. (3.9) but the difference Nji — Njx° = nji is small owing to the smallness of Q7, Regarding
njk and 7 as quantities of the same order and using the linear approximation for (4,3) we obtain

NiFy ~

Mk = TR (P + Qi) by (4.4)

Substituting the resultant value of Njk into (4.2) we obtain
o= 2n,[h x (h x D, n, = ¥ m0f (A)

e b -4

The coefficient 1, is the rotational viscosity {1, 7, 8]. On incorporating this into the Einstein formula
(1.1) we have, to a first order accuracy in the concentration,

(4.5)

ne = o {1+ ¢ + 31 () sin* o]} (4.6)

where @ is the angle between the vectors hand Q. For hllQ the rotational viscosity does not appear, since
in this case the orientation of the particle anisotropy axis along hdoes not prevent the particle from
rotating at a velocity @ around the same axis,

A curve of f1(3) is presented in Fig. 1 (continuous line). The asymptotic of this function may be

found from (3,10) and (3.11)
*/ashE, At

TUL—=3/A, A1 ' (4.7)

5. As indicated in § 4, in order to determine the rotational viscosity of a suspension we must express
the antisymmetric part of the stress tensor (4.2) in the form (4.5). This may be done by eliminating the
orientation tensor of the moving suspension Nji from (4.2), this having been found in § 3 and 4 phenomeno-
logically with the help of Eq. (3.7).

A
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P S B e In order to refine the dependence of the rotational viscosity on the
i —— anisotropy parameter Alet us calculate Njk directly from the kinetic
25 ,f / equation; for the Brownian particles of the suspension this means the
/ Fokker— Planck equation. In considering the rotational diffusion this
// equation may be conveniently put in the form [9]
; )
0
5w a5 2 L)W =0 6.0
Fig. 1 _ ) .
L=nX Y

where W(n t) is the probability density of the directions of the particle

anisotropy axis, L is the operator of an infinitely small rotation, w is
the angular velocity of the particle. This latter is determined (neglecting inertia) from the condition that
the sum of all the mechanical moments acting on the particle suspended in the liquid should vanish:

LU 464,V (@ —@) —kTLIn W =0 (5.2)

The first two terms in (5.2) are the moments of the regular forces, magnetic (2.5) and viscous, while
the third term is the moment of the random forces. From (5.2) we obtain

® = (61)-1 [67Q -2\ (nh) (m X h) — L In W] (5.4)

Here we have used the notation introduced earlier: T =0¢V/kT, A = KV/kT. Substituting (5.3) into
(5.10) we obtain the following equation for the steady-state distribution function

"LIL — 2\ (nh) (n X h) — 6vQ] W = 0 (5.4)

For a stationary suspension (2 = 0) the Gibbs distribution (3.8) forms the solution W, to Eq. (5.4).
Hence in the moving liquid (allowing for the smallness of 7, we may conveniently seek the distribution
function in the form

W=Wo(l +%), <xdo=§xWedtn=0 (5.5)

where X is a quantity of order 27, We earlier mentioned the "two-sidedness" of the anisotropy axis: W is
invariant with respect to the replacement of n by —n. It follows that the expansion of the scalar function

X in powers of the vector n may only contain even products of its components. In the first nonvanishing
order

% =Gz (A, h, Q1) n;n, (5.6)

Q@ and h_are pseudovectors. Taking account of this we mayreadily convince ourselves that the only true
scalar of the form (5.6) linear with respect to 7 is

% = g (A) 7 (nh) (n X h)-Q (5.7)
After substituting (5.5) and (5.7) into (5.4) the latter was multiplied by nink and integrated. This

method of determining the function g(}) (analogous to the Chapman— Enskog method in the kinetic theory
of gases) leads to the result

. 2L [ F"—F" A\
g=—n[t+ 3 (F=F 1] (5.8)
Knowing the distribution function (5.5} we may calculate the correction njk to the tensor Njk° due to
the motion of the medium, Instead of (4.4) we find

nip = (ranpxde = & (A) (Quhn + Qubidly (5.9)
with the g of (5.8). Making use of (5.9) we obtain the following for the rotational viscosity (see (4.5))
3 AR 1 2\ | F*"— F™ -~
N = 5 N9l (A), fo(d) = ‘2‘(’7‘ — -5)[1 + T(—F’— y i %)] ! (5.10)
The asymptotics of the function f; are similar to (4.7)

2/45h?, ‘1 5.11
fz(’“)z{i_i/zx, A1 (6.11)

The relationship f2(}) is shown as the broken line in Fig. 1.
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7-(8,29) pr (== /4/,__'————— For a suspension of particles with a cubic magnetocrystalline
‘ ,4/,-——}—""‘* anisotropy an analogous calculation was presented in {10 for the case
‘5 £ ‘l/’ ; E A <1, Instead of 2(5.11) the term 8/175 »* was obtained. This is very
// J \ 1 close to the 3/180 A* for the uniaxial crystal (5.11).
’ | { ; g | 6. We may note the closeness of the functions 1,(}) determined
5 v 5 27 py means of Eqs. (4.5) and (5.10) over the whole range of X values. A

similar situation held when calculating the magnetoviscosity of suspen-
sion of rigid dipoles (A # £): the phenomenological result [1]

3 £ —th _
M (§) = 5 M@ FTrme E=uH kT 6.1)
was close to the kinetic expression [5].
For finite values of £ and A the rotational viscosity is a function of both these variables
M =N (& M)

The viscosity of the "magnetized" [in the sense of (2.4)] suspension calculated in this paper should
be regarded as My @, A), and ny(¢) from (6.1) as %y (£, ©). The curve of the latter is shown in Fig. 2as a
continuous line,

Every ferromagnetic suspension is characterized by a specific value of the parameter A = A, deter-
mined by the material and size of the particles. Also dependent on X (Fig. 1) is the limiting viscosity
T 0, A), to which 7 (&, A) should tend asymptotically on increasing the external field. In the region
£ << Ao the functions "p(&, Ag) and " (&, ) should be close together. It may reasonably be expected that the
broken curve in Fig. will give a qualitatively correct description of %,(£) for a fixed A,

A comparison between experimental data relating to the magnetoviscosity of suspensions and the
theoretical results may be used in order to determine such essentiaily "solid-state™ parameters as the
anisotropy constant and the saturated magnetization of a dispersed ferromagnetic material.

The authors wish to thank L. N, Maurin, G, Z. Gershuni, and M. A, Martsenyuk for advice and dis~
cussions.
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